Die Bedeutung der Ernährung für die Wundheilung

Literaturrecherche

AZW Ausbildungszentrum West

Projektarbeit
Zur Weiterbildung

Wundmanagement

Betreuerin:
Klaudia Kaltenbacher, DGKP

vorgelegt von
Daniel Kaltenbacher, DGKP

Hall in Tirol, Mai 2018
Vorwort

Im Zuge meiner Weiterbildung zum „Wundmanagement“ ist es erforderlich, eine Projektarbeit zu einem Thema freier Wahl zu schreiben.

An dieser Stelle möchte ich mich bei meiner Betreuerin Klaudia Kaltenbacher bedanken, die mir mit Rat und Tat zur Seite stand.

Ein Dankeschön an Christine Gerold, die mir diese Weiterbildung angeboten und somit ermöglicht hat.

Zudem bedanke ich mich bei Hermann Schlögl, Marianne Hintner und all den Referenten, für den interessanten Unterricht.

Zu guter Letzt bedanke ich mich bei Harald Tamerl fürs Korrekturlesen.
1 Einleitung

Eine abwechslungsreiche gesunde Ernährung, wie auch Zusatznahrungen sorgen für die ausreichende Aufnahme von Nährstoffen und ist für den reibungslosen Ablauf aller Körperfunktionen sehr wichtig. Sie spielt daher auch bei der Entstehung und Heilung von Wunden eine wichtige Rolle. Eine schwerwiegende Folge der Malnutrition ist die beeinträchtigte Wundheilung sowie die Entstehung neuer Wunden.

In Österreich sind laut „Institut für Pflegewissenschaften der Universität Graz“ 60% der KrankenhauspatientenInnen und bis zu 85% der PflegeheimbewohnerInnen von Malnutrition betroffen. Malnutrition führt zu vermehrt auftretenden Komplikationen, zu erhöhter Morbidität und Mortalität, höhere Wiederaufnahmerate, geringere Lebensqualität für die Betroffenen, sowie zu erhöhten Kosten für das gesamte Gesundheitssystem.
1.1 Ziel
Das Ziel dieser Projektarbeit soll es sein, aufzuzeigen, welchen Stellenwert die Ernährung in der Wundheilung hat. Menschen die an Wunden leiden, sowie Personen die Menschen mit Wunden betreuen, soll ein Überblick gegeben werden, wie eine optimale Ernährung die Wundheilung unterstützen kann.

1.2 Methodik
Um diese Arbeit zu verfassen, wurde eine Literaturrecherche durchgeführt. Die Informationen wurden aus Fachbüchern, Fachzeitschriften und Internetseiten entnommen.

1.3 Forschungsfrage
Welchen Einfluss hat die Ernährung auf die Wundheilung? Was ist die ausreichende Nährstoffzufuhr um einen optimalen Heilungsverlauf zu gewährleisten?
2 Wundheilung / Wundheilungsphasen

2.1 Exsudationsphase

Wachstumsfaktoren für die Wundheilung ab. In dieser Phase treten die typischen Infektionszeichen auf, sie ist normalerweise nach drei Tagen abgeschlossen (Protz, 2016; Panfil und Schröder, 2015).

2.2 Granulationsphase

2.3 Epithelisierungsphase

3 Malnutrition

3.1 Ursachen

3.2 Klinische Symptome der Malnutrition

3.3 Messung der Körperzusammensetzung

Bei der Messung der Körperzusammensetzung (Anthropometrie) werden die Körpergröße, das Körpergewicht und an Referenzpunkten des menschlichen

Laut Protz (2016) stehen folgende anthropometrische Untersuchungsmethoden zur Verfügung:

- Body Mass Index (BMI)
- Bioelektrische Impedanzanalyse (BIA)
- Waden-, Oberarmumfang und Trizepshautfaltendicke

Body Mass Index (BMI)

Der Body Mass Index gehört zu den sinnvollsten und wichtigsten Ernährungsparametern. Die Größe und das Körpergewicht sind auch die Parameter die bei Kindern herangezogen werden um den Ernährungszustand zu ermitteln. Bei chronischer Mangelernährung hat sich der BMI als wichtiger Indikator erwiesen (Bieselski et al, 2010).

\[BMI = \frac{\text{Körpergewicht in kg}}{(\text{Körpergröße in m})^2} \]

Abb.1: Body Mass Index (BMI)
(www.bmi-online.info, 2018)
Bioelektrische Impedanzanalyse (BIA)

Die Bioelektrische Impedanzanalyse stellt eine schnelle, sichere und einfach reproduzierbare Möglichkeit dar, um die Körperzusammensetzung indirekt zu messen. Es ist schmerzlos, nicht invasiv und bietet sich somit bei Kindern und Jugendlichen als Messinstrument an.

Kontrakturen und Amputationen können Widerstände darstellen, die zu einem falschen Ergebnis führen. Diese Untersuchung kann bei Menschen, welche von diesen Leiden betroffen sind, nicht durchgeführt werden.

BIA – Geräte messen den elektrischen Widerstand bzw. die Impedanz indem ein kleiner elektrischer Strom durch den Körper geleitet wird. Der höhere Wasser- und Elektrolytgehalt in der fettenfreien Masse bietet weniger elektrischen Widerstand als das Fettgewebe. Durch den Spannungsabfall kann die fettfreie Masse errechnet werden, was wiederrum indirekt auf die Körperzusammensetzung schließen lässt. (Pandey et al, 2010; Protz, 2016).

Abb.2: Durchführung der BIA
(www.medico-pro.com)
Waden-, Oberarmumfang und Trizepshautfaltendicke

3.3.2 Screening Instrumente

Protz (2016) beschreibt mehrere Screening Instrumente:

- Mini Nutritional Assessment MNA (findet im geriatrischen Bereich Anwendung)
- Nutritional Risk Screening NRS (im Krankenhausbereich)
- Malnutrition Universal Screening Tool MUST (ambulanter Bereich)
- Pflegerische Erfassung von Malnutrition und deren Ursachen PEMU (stationäre Langzeit-/Altenpflege)

3.3.3 Labordiagnostik

Zur Erfassung einer Malnutrition gibt es eine Reihe von Blutwerten die im Rahmen einer Laboruntersuchung wertvolle Informationen liefern. Jedoch reicht eine Laboruntersuchung alleine nicht aus um den Ernährungsstatus festzustellen. Laborparameter können im Assessment und im Management der Malnutrition in folgenden Punkten hilfreich sein:

- um einen spezifischen Nährstoffmangel nachzuweisen
• um Aufschluss über die Ätiologie der Malnutrition geben
• bestimmte Parameter dienen als Anhaltspunkte für die Malnutrition und Verlaufswerte für die Ernährungstherapie

Die Ernährung und der Ernährungszustand haben Einfluss auf die Proteinsynthese. Die Ermittlung der Serumproteine kann somit zur Beurteilung der Malnutrition hilfreich sein.

Eine der wichtigsten Laborparameter der auf eine Malnutrition hinweist ist das Albumin. Werden dem Körper zu wenige Aminosäuren zugeführt, nimmt die Albuminsyntheserate ab. Es gibt auch viele andere Faktoren, welche die Serumalbuminkonzentration beeinflussen. Eine langfristige Beurteilung des Ernährungszustandes, durch die Albuminkonzentration im Blut, sollte also mit Vorsicht interpretiert werden.

Transferrin ist ein guter Parameter für die Beurteilung des Proteinstatus. Die Syntheserate wird durch den Körpereisenstatus bestimmt, welcher vor allem bei Malnutrition reduziert ist.

Der Spiegel Prälbumin/Transthyretin (TTR) sinkt bei eingeschränkter Energiezufuhr. TTR reagiert am empfindlichsten auf Veränderungen der Energiezufuhr. Im Vergleich zu anderen Proteinen besteht TTR aus einem hohen Anteil von essentiellen Aminosäuren. Dadurch eignet sich dieser Wert sehr gut um qualitativos Eiweißmangel festzustellen.

Die Bestimmung der absoluten Lymphozytenzahl ist ein sehr unspezifischer Wert. Es gibt viele Ursachen wie eine Infektion, Immunsuppression, hämatologische Krankheiten, Stress, Neoplasien oder Kortikosteroide die eine veränderte
Lymphozytenzahl bewirken können. In Tabelle 2 ist ersichtlich, wie die bisher genannten Parameter bei Malnutrition verändert sind (Leuenberger et al, 2007).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Norm</th>
<th>Schweregrad der Mangelernährung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin (g/L)</td>
<td>35–45</td>
<td>mild 32–35, mässig 28–32, schwer <28</td>
</tr>
<tr>
<td>Transferrin (g/L)</td>
<td>2,5–3,0</td>
<td>mild 1,9–2,5, mässig 1,5–1,8, schwer <1,5</td>
</tr>
<tr>
<td>Präalbumin / TTR (mg/L)</td>
<td>160–300</td>
<td>mild 120–150, mässig 20–100, schwer <100</td>
</tr>
<tr>
<td>RBP (mg/L)</td>
<td>26–76</td>
<td>mild <20, mässig –, schwer –</td>
</tr>
<tr>
<td>Lymphozyten (/mm³)</td>
<td>2000–3600</td>
<td>mild 1200–1500, mässig 500–1200, schwer <300</td>
</tr>
</tbody>
</table>

Tabelle 2: Laborwerte bei Malnutrition
(Leuenberger et al, 2007, S.17)

3.4 Folgen der Malnutrition

Als mögliche Folgen der Malnutrition führt Protz (2016) folgende Punkte an:

- Wundheilungsstörung und Dekubitusgefahr
- Infektanfälligkeit
- Beeinträchtigung der Herzleistung und der Atemfunktion
- verlangsamerter Genesungsprozess nach einer Erkrankung
- Störung geistiger und physischer Funktionen
- Haut- und Schleimhautdefekte
- Reduzierte Leistungsfähigkeit
- Abnahme der Muskelkraft und ein erhöhtes Sturzrisiko

Menschen mit ausgeprägter Malnutrition können in Folge eine Kachexie aufweisen. Das Voranschreiten des Gewichtsverlustes führt zur Verminderung des Unterhautfettgewebes, dadurch wird die Haut an den Knochenvorsprüngen zunehmend dünner. Die Krümmung der Körperkontur hebt sich hervor und die
Widerstandsfähigkeit der Haut nimmt ab. Das Gewebe wird mit zu wenigen Nährstoffen versorgt, was zum Absterben von Zellen und zur Bildung von Nekrosen führt.

4 Ernährung

In einer Wunde kommt es zu erhöhter Stoffwechselaktivität und dies erfordert auch einen deutlich höheren Bedarf an Nährstoffen und Energie. Wird dieser erhöhte Bedarf nicht gedeckt, führt dies zur Beeinträchtigung der Wundheilung. Damit es erst gar nicht zu einer Beeinträchtigung kommt, muss eine ausreichende Versorgung mit Energie und Nährstoffen gewährleistet sein. Dabei werden folgende Nährstoffe unterschieden:

- Die Gruppe der Makronährstoffe wird von Proteinen, Kohlehydraten und Fett gebildet. Sie liefern die notwendige Energie und Bausteine für die Wundheilung
- Mikronährstoffe (Vitamine, Zink und Eisen) sind nicht direkt am Heilungsprozess beteiligt. Sie dienen als Cofaktoren von Enzymen die an der Wundheilung beteiligt sind (Curetics UG, 2016)

4.1 Proteine

Der menschliche Körper verfügt über keine eigenen Eiweißreserven. Wird Eiweiß nicht in der benötigten Menge dem Körper zugeführt, kommt es zum Abbau von
körpereigenem Eiweiß. Dies führt zu Muskelabbau, Funktionseinschränkungen die das Immunsystem, die Verdauung und die Wundheilung betreffen. Ein gesunder erwachsener Mensch hat einen Proteinbedarf von 0,8g/kg Körpergewicht. Bei Menschen mit Wunden, hochgradigen Verbrennungen sowie ausgeprägter Malnutrition liegt der Proteinbedarf bei 1,0-1,5g/kg Körpergewicht (Protz, 2016; Panfil und Schröder, 2015).

4.2 Kohlehydrate

4.3 Fette

4.4 Vitamine und Mineralstoffe

Vitamin E wirkt als Radikalfänger und als Antioxidans. Durch seine antiinflammatorische Eigenschaft wirkt sich Vitamin E positiv auf die Wundheilung aus. Studien die eine zusätzliche Supplementierung von Vitamin E bedürften existieren nicht. Vitamin E ist vor allem in pflanzlichen Ölen, wie Weizenkeimöl, Sonnenblumenöl und Olivenöl enthalten (Benedikt, 2006; Panfil und Schröder, 2015; Biesalski et al, 2010).

Vitamin K ist dafür verantwortlich, die verschiedenen Gerinnungsproteine in ihre gerinnungswirksamen Formen umzuwandeln. Ein Mangel an Vitamin K kann somit zu Blutungen in der Wunde und zu einer erhöhten Infektionsgefahr führen. Menschen nehmen Vitamin K vor allem durch grünes Blattgemüse auf. Lebensmittel die besonders hohen Vitamin K Gehalt aufweisen, sind Blumenkohl, Huhn und Hühnerleber, Sonnenblumenöl und Weizenkeime (Benedikt, 2006; Panfil und Schröder, 2015; Biesalski et al, 2010).

4.5 Flüssigkeitsbedarf

Menschen mit Wunden oder Verbrennungen verlieren häufig Flüssigkeit in Form von Wundexsudat. Bei vermehrtem Flüssigkeitsverlust ist die verlorene Flüssigkeit auszugleichen. Durch Flüssigkeitsmangel wird das Blut dicker. Dies führt zu einer schlechteren Durchblutung und infolge kommt es zur Unterversorgung von
Nährstoffen und Sauerstoff in den Zellen. Die Deutsche Gesellschaft für Ernährung empfiehlt den täglichen Flüssigkeitsbedarf wie folgt:

<table>
<thead>
<tr>
<th>Alter</th>
<th>Wasserzufuhr durch Getränke</th>
<th>Wasserdurch Alimen</th>
<th>Gesamtwasserzufuhr</th>
<th>Wasserzufuhr durch Getränke und feste Nahrung</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 bis unter 19 Jahre</td>
<td>1530 ml/Tag</td>
<td>920 ml/Tag</td>
<td>350 ml/Tag</td>
<td>2800 ml/Tag</td>
</tr>
<tr>
<td>19 bis unter 25 Jahre</td>
<td>1470 ml/Tag</td>
<td>890 ml/Tag</td>
<td>340 ml/Tag</td>
<td>2700 ml/Tag</td>
</tr>
<tr>
<td>25 bis unter 51 Jahre</td>
<td>1410 ml/Tag</td>
<td>960 ml/Tag</td>
<td>330 ml/Tag</td>
<td>2600 ml/Tag</td>
</tr>
<tr>
<td>51 bis unter 65 Jahre</td>
<td>1230 ml/Tag</td>
<td>740 ml/Tag</td>
<td>280 ml/Tag</td>
<td>2250 ml/Tag</td>
</tr>
<tr>
<td>65 Jahre und älter</td>
<td>1310 ml/Tag</td>
<td>680 ml/Tag</td>
<td>260 ml/Tag</td>
<td>2250 ml/Tag</td>
</tr>
</tbody>
</table>

Tabelle 4: Tagesbedarf an Flüssigkeit
(www.dge.de, 2018)

Bei einem herzgesunden erwachsenen Menschen führt dies zu einem Orientierungswert von 30-40 ml/kg Körpergewicht.

5 Praktische Tipps

Im Allgemeinen wird der Energiebedarf mit 30kcal pro Kilogramm Körpergewicht angegeben. Bei bestehender Malnutrition ist es notwendig, die Energiezufuhr zu erhöhen. Die Proteinzufuhr bei einer bestehenden Wunde beträgt 1,0g-1,5g pro Kilogramm Körpergewicht. Werden zu wenige Kalorien dem Körper zugeführt, wird zur Energiegewinnung Protein herangezogen. Die fehlenden Proteine stehen somit nicht mehr bei der Wundheilung zur Verfügung. Wird die erforderliche Protein- und Energiemenge nicht erreicht empfiehlt es sich orale Nährstoffsupplemente bzw. energieangereicherte Lebensmittel und Speisen einzusetzen. Enterale oder parenterale Ernährung kann dann angedacht werden, sobald die ausreichende Zufuhr von Energie und Proteinen trotz der zuvor genannten Maßnahmen nicht möglich ist.

Vor allem bei nässenden und Verbrennungswunden ist auf ausreichende Flüssigkeitszufuhr zu achten. Bei Dehydration, starkem Schwitzen, Fieber oder Erbrechen bedarf es einer zusätzlichen Substitution von Flüssigkeit.

Eine ausreichende Versorgung mit Vitaminen und Mineralstoffen soll mit einer gesunden Ernährung erreicht werden. Kann eine ausreichende Versorgung durch die Ernährung nicht gedeckt werden, können Vitamine und Mineralstoffe in Form von Supplementen zugeführt werden.

In einer Studie mit 200 mangelernährten Patientinnen und Patienten konnte ein positiver Effekt von Arginin auf die Wundheilung nachgewiesen werden. So wurde bei zusätzlicher oraler Supplementierung von Arginin, Zink und Antioxidantien ein signifikante Verkleinerung des Ulkus Areals und eine schneller Wundheilung beobachtet.

- Milch- und Getreidegericht (Pfannkuchen, Milchreis, Grießauflauf)
- Kartoffel-Ei-Gericht (Rührei mit Kartoffelbrei, Reibkuchen oder Bratkartoffeln mit Spiegelei)

Folgende Ernährungstipps können an die Patientinnen und Patienten weitergegeben werden:

- Zum Frühstück oder Abendessen ein Ei, Rührei oder Omelette
- Als Zwischenmahlzeit kann ein Müsli mit Milch, Joghurt Quark oder Dickmilch mit Früchten eingelegt werden.
- Zwischendurch ein Stück Käse oder mageren Schinken naschen
- Den Salat mit Käsewürfeln verfeinern oder das Gemüse wie z.B.: Kartoffeln mit Käse überbacken
- Für den Nachmittag bietet sich eine Zwischenmahlzeit wie Fruchtjoghurt oder ein kleines Stück Käsekuchen an
- Für das Abendessen kann Kräuterquark zum Brot, Thunfischsalat oder eine andere Fischkonserve serviert werden. Ein geschnittenes, hartgekochtes Ei ergibt eine sinnvolle Beilage.

Um die tägliche Energiezufuhr zu gewährleisten haben die Patientin bzw. der Patient folgende Möglichkeiten:

- Regelmäßig kleine Mahlzeiten einnehmen
- Zwischendurch Cracker mit Frischkäse oder Quark
- Butterkeks mit etwas Butter bestreichen
- Zwischendurch Zwieback mit Honig, Marmelade oder Butter essen
- Lebensmittel kalorienreich gestalten, auf Produkte wie Magermilch oder Joghurt mit 0,1% Fett verzichten
- Milch und Milchprodukte mit mindestens 3,5% Fettgehalt verwenden
- Wenn Kuchen gegessen wird nicht auf den Schlag verzichten
- Malzbier fungiert als gute Energiequelle
6 Resümee

Während meiner Literaturrecherche konnte ein eindeutig positiver Zusammenhang zwischen Ernährung und Wundheilung belegt werden. Trotzdem bin ich auf nicht zufriedenstellende Fakten gestoßen. Es wird immer wieder darauf hingewiesen, dass zahlreiche diagnostische Mittel recht ungenau sind und deshalb nicht isoliert verwendet werden können. Für die korrekte Diagnose und in weiterer Folge ernährungstherapeutischer Behandlung kann dies ein erhebliches Hindernis darstellen.
7 Zusammenfassung

8 Fallbeispiel

Durchgeführte Operationen: aorto – bifemoraler Prothesen Bypass inklusive Femoralsigabelplastik

Wundabstrich Großzehe rechts: Staphylococcus Aureus, Klebsiella Oxytoca
8.1 Wundbeurteilung

Abb.3: Ulcus Dig 1
(Patientendokumentation Tirol-Kliniken, 07.12.2017)

8.2 Wundbehandlung

Von ärztlicher Seite wurde die Wunde Chirurgisch debridiert und von der Pflege, laut Arztanordnung, wie folgt versorgt:

8.3 Verlauf

Wundbeurteilung

Der Patient wurde weiterhin an der gefäßchirurgischen Ambulanz behandelt. Anhand der Fotodokumentation (Abbildung 4) ist deutlich zu erkennen, dass sich die Wunde von 17mm x 17mm auf 6,2mm x 9,8mm verkleinert hat. Am Wundgrund haben sich Fibrinbeläge gebildet. Darunter zeigt sich granulierendes Gewebe. Der Wundrand ist trocken und weist Hyperkeratosen auf. Die Wunde sondert wenig gelbliches, geruchloses Exsudat ab. Der Patient gibt weder Juckreiz noch Schmerzen an. Es sind keine Infektionszeichen vorhanden, die Wundumgebung ist trocken.

Wundbehandlung

Abb.4: Verlauf Februar Ulcus Dig 1
(Patientendokumentation Tirol-Kliniken, 22.02.2018)
Wundbeurteilung

Wundbehandlung

Abb.5: Verlauf April Ulcus Dig 1

(Patientendokumentation Tirol-Kliniken, 19.04.2018)
Einverständniserklärung bezüglich der Nutzung von Behandlungsfotos im Rahmen wissenschaftlicher Vorträge

Ich bin damit einverstanden, dass die Bildaufnahmen von mir unbefristet aufbewahrt werden.

Ich weiß, dass ich jederzeit meine Einwilligung ohne Angaben von Gründen widerrufen kann, ohne dass dies für mich nachteilige Folgen hat.

Ich versichere auf Entgeltzahlungen und urheber- bzw. patentrechtliche oder vergleichbare Ansprüche dafür, dass ich die Bildaufnahmen zur Verfügung stelle. Diese werden nicht veräußert oder direkt kommerziell genutzt.

Ich stimme zu, dass von mir angefertigte klinische Bildaufnahmen für wissenschaftliche Aus- und Weiterbildungszwecke verwendet werden dürfen. Selbstarätig den Erfolg keine Namensnennung. Die Daten werden dabei so weit als möglich pseudonymisiert, sodass von dritter Seite auf legalen Weg (mit rechtlich zulässigen Mitteln) ein Rückschluss auf meine Person nicht mehr möglich ist.

Ich bin damit einverstanden und stimme zu, dass von mir angefertigte Bildaufnahmen (Fotos) für wissenschaftliche Aus- und Weiterbildungszwecke bzw. für wissenschaftliche Vorträge am Aö. Landeskrankenhaus – Universitätskliniken Innsbruck verbreitet und in dessen Eigentum übergehen und willige ein in die zweckgebundene Verwendung für wissenschaftliche Aus-, Weiter- und Fortbildungszwecke und Publikationen.

Anmerkungen:

Innsbruck am, 7.12.2017
Ort
Datum
Unterschrift Patient/Patientin bzw. angehenden VertreterIn

Innsbruck am, 7.12.2017
Ort
Datum
Unterschrift des Arztes der Ärztin

Firma
9 Literaturverzeichnis

Schütz Tatjana, Meteling-Eeken Marleen (2014). Fokus Anthropometrische Messungen. In: Diät & Information. 05/2014. Seite 6-16

10 Tabellenverzeichnis

Tabelle 1 Klinische Zeichen der Mangelernährung
Tabelle 2 Laborwerte bei Malnutrition
Tabelle 3 Tagesbedarf an Vitaminen
Tabelle 4 Tagesbedarf an Flüssigkeit

11 Abbildungsverzeichnis

Abbildung 1 Body Mass Index (BMI)
Abbildung 2 Durchführung der BIA
Abbildung 3 Zehen Ulcus Dig 1
Abbildung 4 Verlauf Februar Ulcus Dig 1
Abbildung 5 Verlauf April Ulcus Dig 1
Eidesstattliche Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit selbstständig verfasst und nur die angegebenen Quellen und Hilfsmittel verwendet wurden. Diese Arbeit wurde noch nicht anderweitig als Arbeit eingereicht.

Hall in Tirol, am 16.05.2018

Daniel Kaltenbacher

Ich bin damit einverstanden, dass meine Projektarbeit weiteren Personen zur Verfügung gestellt werden darf.

Hall in Tirol, am 16.05.2018

Daniel Kaltenbacher